
Metareasoning-based Learning for Classification Hierarchies

Joshua Jones & Ashok K. Goel
Design Intelligence Laboratory, School of Interactive Computing

Georgia Institute of Technology, Atlanta, USA 30332
{jkj, goel}@cc.gatech.edu

Abstract—This paper takes a metareasoning-based approach
to classification learning, framing the learning problem as
one of self-diagnosis and self-adaptation. Artificial Intelligence
(AI) research on metareasoning for agent self-adaptation has
generally focused on modifying the agent’s reasoning processes.
In this paper, we describe the use of metareasoning for
retrospective adaptation of the agent’s domain knowledge.
In particular, we consider the use of meta-knowledge for
structural credit assignment in a classification hierarchy when
the classifier makes an incorrect prediction. We present a
scheme in which the semantics of the intermediate abstractions
in the classification hierarchy are grounded in percepts in
the world, and show that this scheme enables self-diagnosis
and self-repair of knowledge contents at intermediate nodes in
the hierarchy. We also provide an empirical evaluation of the
technique.

I. INTRODUCTION

It is generally agreed in AI that the capability of metar-
easoning is essential for achieving human-level intelligence
[1] [2]. One of the many uses of metareasoning is self-
adaptation in an intelligent agent. It is useful to make a
few distinctions here. First, adaptations in an agent can be
retrospective (i.e., when the agent fails to achieve a goal
in its given environment [3] [4] [5] [6] ), or proactive
(i.e., when the agent is asked to operate in a new task
environment [7] [8]). Secondly, adaptations can be either
to the deliberative element in the agent architecture [3]
[4] [5] [8], or the reactive element [9], or both. Thirdly,
adaptations to the deliberative element may be modifications
to its reasoning process (i.e., to its task structure, selection of
methods, or control of reasoning [3] [4] [8]), or to its domain
knowledge (i.e., the content, representation and organization
of its knowledge [5] ), or both.

A core problem in self-adaptation is that of credit (or
blame) assignment [10] [11]. It is useful to distinguish
between two kinds of credit assignment problems: temporal
and structural. In temporal credit assignment, given a se-
quence of many actions by an agent that leads to a failure,
the task is to identify the actions(s) responsible for the
failure. In structural credit assignment (SCA), given an agent
composed of many knowledge and reasoning elements that
fails to achieve a goal, the task is to identify the element(s)
responsible for the failure. Metareasoning for self-adaptation
typically addresses the latter problem of SCA. It is useful to
note the close relationship between agent self-adaptation and

agent learning: the use of metareasoning for self-adaptation
views learning as a deliberative, knowledge-based process
of self-diagnosis and self-repair.

In this paper, we describe work on using metareasoning
for repairing an agent’s classification knowledge when the
classifier supplies an incorrect class label. More specifically,
we consider the subclass of classification problems that can
be decomposed into a hierarchical set of smaller classifi-
cation problems; alternatively, problems in which features
describing the world are progressively aggregated and ab-
stracted into higher-level abstractions until a class label is
produced at the root node. This subclass of classification
problems is recognized as capturing a common pattern of
classification (e.g., [12] [13]). We will call this classifica-
tion task compositional classification, and the hierarchy of
abstractions an abstraction network.

In particular, we consider the problem of retrospective
adaptation of the content of the intermediate abstractions
in the abstraction network (and not its structure) when
the classifier makes an incorrect classification. Note that
once SCA becomes a core problem: given the error at the
root node, the problem now is to identify the intermediate
abstractions in the abstraction network responsible for the
error. In this paper we explore the following hypothesis:
if the semantics of the domain concepts that form the
intermediate abstractions in a classification hierarchy can be
grounded in predictions about percepts in the world, then
meta-knowledge in the form of verification procedures asso-
ciated with those domain concepts enables a metareasoner to
address the structural credit assignment problem. In the case
of compositional classification, this means that intermediate
abstractions in the abstraction network are chosen such that
each abstraction corresponds to a prediction about percepts
in the world, meta-knowledge comes in the form of verifica-
tion procedures associated with the abstractions, and metar-
easoning invokes the appropriate verification procedures to
perform structural credit assignment and then adapt the
abstractions. The verification procedures explicitly encode
the grounding of intermediate abstractions in percepts from
the environment.

II. COMPOSITIONAL CLASSIFICATION

Let T be a discrete random variable representing the
class label. Let S = {s : s is empirically determinable



and ℎ[T ] > ℎ[T ∣s]}, where ℎ[x] denotes the entropy of x.
S is a set of discrete random variables that have nonzero
mutual information with the class label and are empirically
determinable, meaning that there is some way to interact
with the environment to determine which value has been
taken by each member of S. It is crucial to note that in
general this interaction will not be possible until some time
after the classification has been produced. That is, we expect
that more information will be available during diagnosis
and learning, when the system is retrospectively reflecting
on a past mistake, than was available at the time that the
classification was made. Each member s of S represents a
related set of equivalence classes, where each value taken
by s is a unique equivalence class. A problem instance is
generated by jointly sampling the variables in S ∪ T .

Empirical determinability captures the notion of percep-
tual grounding of concepts, indicating that each equivalence
class represents some verifiable statement about the world.
In the simplest case, empirical determinability means that
the value taken by the variable in a given problem instance
is directly observable at some later time after classifica-
tion has occurred. In general, some experiment may need
to be performed in order to observe the value of some
s ∈ S. By performing the necessary experiments, we can
obtain the true values of intermediate nodes in order to
perform self-diagnosis over the knowledge structure used
for the classification. We call the problem of predicting
T in such a setting compositional classification. In order
to make such predictions, our agent will make use of a
structured knowledge representation called an abstraction
network, defined in the next section. This representation will
capture knowledge about the relationships between variables
in S. Knowledge repair will be required if the distributions
P(s∣K), s ∈ S∪T,K ⊆ S are not always accurately known
by the agent, but must instead be inferred from experience.

III. ABSTRACTION NETWORKS

A. Representation

Here we formally define the knowledge representation
used at the object level for the compositional classification
task. This representation is annotated with meta-knowledge
used by meta-level reasoning process for self-diagnosis. We
call this diagnostic self-knowledge empirical verification
procedures, described in more detail below.

The knowledge structure contains a node for each s ∈
S ∪ T . These nodes are connected in a hierarchy reflecting
direct dependence relationships organized according to back-
ground knowledge. Each node will handle the subproblem
of predicting the value of the variable with which it is
associated given the values of its children.

Definition 1: A supervised classification learner is a tu-
ple < I,O, F, U >, where I is a set of input strings
(input space), O is a set of output symbols (output space),
F is a function from I to O, and U is a function from

(i, o) : i ∈ I, o ∈ O to the set of supervised classification
learners that share the same input space I and output space
O.

Definition 2: An empirical verification procedure (EVP)
is a tuple < E,O,Cb, Ca > where O is a set of output sym-
bols (output space) and E is an arbitrary, possibly branching
sequence of actions in the environment and observations
from the environment concluding with the selection of an
o ∈ O. Cb and Ca are the costs of procedure E before and
after classification, respectively.

Any output space O of an empirical verification procedure
is an empirically determinable set of equivalence classes.
So, a set of equivalence classes is empirically determinable
if an empirical verification procedure can be defined with
an output space equal to that set of classes. In this paper we
do not consider EVPs with non-unit cost.

Definition 3: An Abstraction Network (AN) is a tuple
< N,O,L, P >, where N is a (possibly empty) set of ANs,
O is a set of output symbols, L is a supervised classification
learner, and P is an empirical verification procedure. Let I
be the set of strings formable by imposing a fixed order on
the members of N and choosing exactly one output symbol
from each n ∈ N according to this order. The supervised
classification learner L has input space I and output space
O, and the empirical verification procedure P has output
space O.

When N is empty, L is trivial and has no use as the input
space is empty. In these cases (the leaves of the AN), a
value determination must always be made by invoking P ,
which must be possible before classification in the case of
AN leaves.

B. Object-level Reasoning

In a given problem instance, the values of the leaf nodes
are fixed by observation. Each node with fixed inputs then
produces its prediction. This is repeated until the value of
the class label is predicted by the root of the hierarchy.

begin AN-reasoning(a)
1) If a.N = ∅, execute a.P and return the result.
2) Else, recursively execute this procedure for each n ∈

N to generate an input string i for a.L, then return
a.L.F (i) and store this value and i for the purpose of
the self-diagnosis procedure (called a.last value and
a.last input below).

end

C. Meta-level Diagnosis and Repair

At some time after classification, the true value of the
class label is obtained by the monitoring process. If the value
produced by object-level reasoning was correct, no further
action is taken. If the value is found to be incorrect, a self-
diagnosis and repair procedure is followed. The specifics of
this procedure are dependent upon the characteristics of the



learner types that are used within nodes and the classification
problem setting. For all of the empirical results detailed in
this paper, the following procedure is used:

begin AN-diagnose-and-repair(a)
1) If a.P == a.last value then return true.
2) ∀n ∈ a.N , call AN-diagnose-and-repair(n). If ∃n ∈

a.N s.t. AN-diagnose-and-repair(n) == false then
return false.

3) a.L← a.L.U((a.last input, a.P )), return false.
end

This procedure has a base case when the leaves are
reached, as their true values were obtained before classi-
fication, and thus cannot be found to be incorrect.

Notice that an AN abstracts in two ways. One is ap-
parent in the object-level reasoning procedure; information
is progressively lost at each node in the hierarchy during
reasoning as information is aggregated into equivalence
classes, so abstraction takes place during inference. The
second source of abstraction becomes clear in the self-
diagnosis and repair procedure. The EVPs explicitly encode
a process of abstraction from raw state to the equivalence
classes produced at nodes in the AN.

The procedure detailed above is optimized to localize
blame for classification errors using as few probes as possi-
ble under certain assumptions about error (no compensat-
ing faults) and the problem setting/learner type. A more
conservative blame assignment strategy can be used when
these assumptions are not reasonable – for instance, simply
executing the EVP at each node in the hierarchy for every
failure.

IV. EXPERIMENTS

In order to verify that the diagnostic technique described
above allows for correction of faulty knowledge in an AN,
we have performed a set of experiments in a synthetic
domain. The environment in this domain consists of a fixed
abstraction hierarchy, over which no learning will occur,
that represents the correct, target content (and structure)
for the problem. Given this fixed AN, we then create a
separate learner AN that will be initialized with incorrect
knowledge content and expected to learn to functionally
match the content of the target AN. This is implemented
by initializing the knowledge content of both the fixed and
learner AN nodes separately with pseudo-random values.
The randomly generated content of the fixed AN forms the
target knowledge for the learner AN. Because the work de-
scribed here is concerned only with repairing content and not
structure, we do build the learner AN with a correct structure
that matches that of the fixed AN. Training proceeds by
(1) generating a pseudo-random sequence of floating point
numbers to serve as the observations for the input nodes of
the ANs, (2) performing inference with the fixed AN, saving
the values produced by all intermediate nodes as well as the

root node, (3) performing inference with the learner AN
and (4) performing structural credit assignment (SCA) and
learning over the learner AN according to the procedures
described above. EVPs within the inputs of both ANs are set
up to quantize the floating point observations. EVPs are not
needed at non-leaf nodes in the fixed AN, since no learning
will occur. EVPs at non-leaf nodes in the learning AN are set
up to examine the saved output value from the corresponding
node in the fixed AN.

In addition to verifying that the diagnostic procedure
described in this paper allows for correction of faulty AN
content, we wished to determine the benefit of using a struc-
tured knowledge representation matching domain structure
vs. using a flat, unstructured representation. Thus, in addition
to the learner AN described above, we also trained a flat
learner in each problem setting for which we report results in
the synthetic domain. These flat learners are implemented as
ANs where the input layer is connected directly to the output
node. Thus, in the flat learners used in these experiments,
there is a single learner that must learn the full mapping from
inputs to output values without the generalization enabled
by a structured representation. In all experiments described
here, we use simple rote learners within each node. When
these rote learners receive a learning example, they merely
directly record the example’s mapping from input values to
output, overwriting previous mappings if necessary.

In the experiments in the synthetic domain, all of the
structured ANs take the form of binary trees (each non-
leaf node has a fanin of two). Every node, including the
leaves and the root, chooses from among 3 possible output
values in this set of experiments. Thus, each rote learner
used in structured learners in the synthetic domain has to
learn 32 = 9 mappings, while the flat learner must learn
3inputs. We experimented with three problem sizes. The
largest had 16 inputs, with the binary structure yielding
8, 4 and 2 nodes at each subsequent layer. The other two
domains used 8 and 4 inputs, respectively. Since we train
and evaluate the learners in an on-line, incremental fashion,
we cannot apply the standard training set/test set approach
to evaluation. Rather, we evaluate the learners’ performance
improvement during training by segmenting the sequence of
examples into multi-example blocks, and comparing overall
error rate between blocks. An error is counted whenever
the learner’s output on a given example does not match the
output produced by the fixed AN. In this way, we are able
to compare error rate around the beginning of a training
sequence with the error rate around the end of that sequence.

The results of these experiments for the three synthetic
domain sizes are depicted in Figure 1 in terms of per-
block error rate. The results shown are an average of 100
independent runs in each setting, with separate random rote
learner initialization at the beginning of each run. Each run
in the large problem setting consists of 10,000 generated
examples, which we segment into 100 blocks of 100 games



(a) Layer sizes 4, 2, 1 (b) Layer sizes 8, 4, 2, 1

(c) Layer sizes 16, 8, 4, 2, 1

Figure 1. Per-block error rates of structured vs. flat learners for various problem sizes

each for the purposes of visualization. In the medium-sized
problem setting, 100 blocks of 50 games were used in each
run. Finally, in the small problem setting, each run consisted
of 100 blocks of 10 games each. These results demonstrate
the efficacy of the proposed method for SCA in repairing
faulty knowledge engineered AN content, as well as the
significant advantage of structured knowledge that reflects
domain structure vs. flat representations in terms of learning
speed. Of course, as problem size increases, so does the
benefit of knowledge structure, as can be seen in these
results.

A. Real Domains

We have also applied the above technique in real domains.
In the domain of FreeCiv, an interactive turn-based strategy
game, a game-playing agent must command units to build
cities. To this end, the agent must make a series of crucial
decisions as to whether the location on the game map
currently occupied by a unit is suitable for the placement of
a new city. We judge the quality of a potential city location
based upon the quantity of resources that we expect a city
built in that location to produce over time. This decision is
an example of a compositional classification task. Figure 2
illustrates a knowledge hierarchy for this task used by our
FreeCiv agent.

For this experiment, we set up the AN depicted in Figure

Figure 2. City Estimate Knowledge Hierarchy

2 with randomly initialized rote learners within each node.
This AN was used to produce outputs from a set containing
three values, corresponding to predictions of poor, mod-
erate and good resource production for a city built on a
considered map location. Specifically, the values correspond
to an expected degree and direction of deviation from a
logarithmic baseline resource production function that was
manually tuned to reflect roughly average city resource



Figure 3. DJIA Abstraction Hierarchy

production. The empirical verification procedures simply
discretize observed game features. All mappings of each rote
learner were initialized to output zeros, which was known to
be incorrect in some cases for each of the learners. In each
trial, a sequence of games is run, and learning and evaluation
occurs on-line. The learners are trained on sequences of 49
games. We segment these sequences of games into multi-
game blocks for the purpose of evaluation; the block sized
used is 7 games. Each game played used a separate randomly
generated map, with no opponents. The agent always builds
a city on the first occupied square, after making an estimate
of the square’s quality. We observed a 52% decrease in the
error rate of the learner, averaged over 60 independent trial
sequences, when comparing the first block of examples to
the 7th block.

In another, economic problem domain, we used the AN
shown in Figure 3 to produce one of two values, DJIA-
up or DJIA-down, corresponding to either a predicted rise
(or lack of change), or a predicted fall in the value of the
Dow Jones Industrial Average in the following month. We
trained on monthly data from Jan 1960 - Nov 2005, yielding
a total of 497 training examples. We again used the standard
configuration of rote learners within nodes. We observed a
23.4% decrease in error between the first 213 and last 213
examples.

These preliminary non-synthetic experiments help to show
that there is some more general applicability of AN-based
learning beyond the artificial domain to problems of practical
interest.

B. Integration with ANNs

ANs do not commit to rote learners within nodes, but
rather can make use of a variety of supervised classification
learning techniques within nodes. In order to demonstrate the
generality of ANs with respect to the classification learners
used within nodes, we will describe results obtained after
integrating the AN framework with artificial neural network
(ANN) code provided by Tom Mitchell and his students.
This integration allows us to replace the rote learners used
within AN nodes in most of the experiments described here
with ANNs.

We used a randomly generated set of synthetic learning
problems to compare the performance of AN-ANNs with
unaugmented ANNs. As in the synthetic experiments
described previously, the environment consists of a fixed
abstraction network, over which no learning will occur,
that represents the correct, target content (and structure)
for the problem. Given this fixed AN, we then again
create a separate learner AN, with an ANN inside each
node, that will be initialized with random knowledge
content and expected to learn to functionally match the
content of the target AN. We also create a randomly
initialized unaugmented ANN that will be used to learn
the same classification task. All ANNs, whether within
the AN structure or operating in isolation, used the same
backpropagation algorithm for learning1. Because the work
described here is concerned only with repairing content
and not structure, we do build the AN-ANN learner with
correct structure that matches that of the fixed AN. In these
experiments we first generate training and test sets. For
every example that will be part of either the fixed training
set or fixed test set, we generate a pseudo-random sequence
of floating point numbers to serve as input values. Next,
we repeat the following procedure, one repetition of which
we call an epoch:

1) For every example in the training set, perform inference
with the fixed AN, saving the output values of all
intermediate nodes and the root. Train both the AN-
ANN and unaugmented ANN systems based on this
inference over the fixed AN.

2) For every example in the test set, perform inference
with the fixed AN, noting the value produced at the
root. Perform inference with both the AN-ANN and
unaugmented ANN systems, and determine whether the
values produced match that produced by the fixed AN.
If the value produced by a given learner does not match
that of the fixed AN, count an error for that learner.

EVPs within the inputs of both ANs are set up to quantize
the floating point observations, and these quantized values
also form the inputs to the unaugmented ANN. EVPs are
not needed at non-leaf nodes in the fixed AN, since no
learning will occur. EVPs at non-leaf nodes in the learning
AN are set up to examine the saved output value from the
corresponding node in the fixed AN, while the output value
from the root of the fixed AN is all that is needed to train the
unaugmented ANN. In these experiments we use randomly
initialized rote learners within each node in the fixed AN,
to simply provide a randomized mapping from inputs to
outputs. Results obtained in a representative experiment are
depicted in Figure 4. In this experiment, we use ANs with

1Learning rate was fixed at 0.3, momentum was fixed at 0.3, input layers
contain one node per input, output layers contain one node per possible
output value, and hidden layers contain a number of nodes equal to 3 times
the number of nodes in the input layer.



Figure 4. AN-ANN vs. Unaugmented ANN performance

a binary tree structure, with layer sizes 16-8-4-2-1. Each
node is able to produce 3 values. The training set contains
1,000 examples, while the test set contains 10,000 examples.
We ran the complete experiment 5 times (re-randomizing
all learners and the fixed AN each time, etc), and Figure 4
depicts the average error values in each epoch across these
runs.

Clearly, it appears that AN-ANNs have a distinct advan-
tage in error decrease per example and in the final error
achieved. A few other experiments with small parameter
changes (e.g. hierarchy size) have been run, with similar
results. It does appear, as expected, that the advantage of
adding AN structure to an ANN-based solution to a classi-
fication problem grows as problem complexity increases.

V. RELATED RESEARCH

As we mentioned in the introduction, the use of metar-
easoning for self-adaptation in intelligent agents is related
to learning: it views learning as deliberative, knowledge-
based self-diagnosis and self-repair. In particular, our work
on use of metareasoning for structural credit assignment in
compositional classification is related to past work on tree-
structured bias (TSB) [13][14]. In TSB, a concept hierarchy
like those represented by ANs is used to limit the hypothesis
space that must be searched by a learner. However, there are
several fundamental differences between our work and past
work on tree-structured bias. First, TSB has dealt only with
binary classifications at all nodes in the hierarchy, while ANs
can deal with multivalue classifications. Next, TSB research
does not have the concept of EVPs, which encode the meta-
knowledge used in our self-diagnostic procedure, instead
relying on carefully constructed queries to the environment

to learn the functions at internal nodes. Thus, rather than
using explicitly represented meta-knowledge to perform self-
diagnosis, TSB has a fixed training procedure that implicitly
relies upon a given type of query. This procedure can be seen
as requiring a very specific kind of empirical verifiability
for internal nodes – thus forcing a particular (and rather
complex) form on the EVPs that a designer would write if
applying TSB procedures within the AN framework. In the
work described here, we take the stance that, in general, a
broader set of queries to the environment may be possible.
If this is the case, it will be more efficient to make use of
the observations that most directly allow us to determine
the value of an internal node when learning. In fact, the
motivating example given by Tadepalli and Russell [14],
concerning a credit-card domain, appears clearly to have
a strong kind of direct empirical verifiability at internal
nodes that could be exploited by an AN using very simple
EVPs. The explicit representation of EVPs by ANs is also
crucial to a major difference between AN research and
past work on TSB. EVPs represent an abstraction from
observable quantities to concepts used in an AN hierarchy.
Because the grounding of concepts in observable quantities
is explicitly represented, it becomes fair game to be operated
upon during adaptation. It also means that we are able to
adapt intermediate concepts themselves according to their
functional roles – recognizing that intermediate concepts
are not set in stone by the environment, but that they are
constructs that exist in order to allow for correct overall
classification.

VI. CONCLUSIONS

In this paper, we described a scheme for using metar-
easoning in intelligent agents for self-adaptation of do-
main knowledge. In particular, we considered retrospective
adaptation of the content of intermediate abstractions in
an abstraction network used for compositional classification
when the classifier makes an incorrect classification. We
showed that if the intermediate abstractions in the abstraction
network are organized such that each abstraction corre-
sponds to a prediction about percepts in the world, and meta-
knowledge comes in the form of verification procedures
associated with the abstractions, then metareasoning can
invoke the appropriate verification procedures to perform
structural credit assignment and adapt the abstractions. This
provides credence to our hypothesis about the use of metar-
easoning for self-adaptation of domain knowledge: if the se-
mantics of domain concepts can be grounded in predictions
about percepts in the world, then meta-knowledge in the
form of verification procedures associated with the domain
concepts enables a metareasoner to address the structural
credit assignment problem over hierarchies based on those
concepts. We note however that whether this hypothesis
holds for tasks other than compositional classification is an
open question.



REFERENCES

[1] R. Brachman, “Systems that know what they are doing,” IEEE
Intelligent Systems, pp. 67–71, Nov/Dec 2002.

[2] M. Minsky, P. Singh, and A. Sloman, “The st. thomas com-
mon sense symposium: Designing architectures for human-
level intelligence,” AI Magazine, vol. 25, no. 2, pp. 113–124,
2004.

[3] L. Birnbaum, G. Collins, M. Freed, and B. Krulwich, “Model-
based diagnosis of planning failures,” In Proceedings of the
Eighth National Conference on Artificial Intelligence, pp.
318–323, 1990.

[4] E. Stroulia and A. Goel, “Functional representation and rea-
soning in reflective systems,” Journal of Applied Intelligence,
Special Issue on Functional Reasoning, vol. 9, no. 1, pp. 101–
124, 1995.

[5] D. B. Leake, “Experience, introspection and expertise: Learn-
ing to refine the case-based reasoning process,” J. Exp. Theor.
Artif. Intell., vol. 8, no. 3-4, pp. 319–339, 1996.

[6] J. W. Murdock and A. K. Goel, “Learning about constraints
by reflection,” Canadian Conference on AI, pp. 131–140,
2001.

[7] ——, “Localizing planning with functional process models,”
ICAPS, pp. 73–81, 2003.

[8] ——, “Meta-case-based reasoning: self-improvement through
self-understanding,” J. Exp. Theor. Artif. Intell., vol. 20, no. 1,
pp. 1–36, 2008.

[9] E. Stroulia and A. K. Goel, “Evaluating psms in evolutionary
design: the autognostic experiments,” Int. J. Hum.-Comput.
Stud., vol. 51, no. 4, pp. 825–847, 1999.

[10] A. Samuel, “Some studies in machine learning using the game
of checkers,” IBM Journal, vol. 3, no. 3, pp. 210–229, 1959.

[11] M. Minsky, “Steps towards artificial intelligence,” In E. A.
Feigenbaum and J. Feldman eds. Computers and Thought,
pp. 406–450, 1963.

[12] T. Bylander, T. Johnson, and A. Goel, “Structured matching:
A task-specific technique for making decisions,” in Pro-
ceedings of the IEEE International Workshop on Tools for
Artificial Intelligence, Fairfax (VA), USA, 1989, pp. 138–145.

[13] S. J. Russell, “Tree-structured bias,” in AAAI, 1988, pp. 641–
645.

[14] P. Tadepalli and S. J. Russell, “Learning from examples
and membership queries with structured determinations,” in
Machine Learning, vol. 32, 1998, pp. 245–295.


