Using Model-Based Reflection to Guide Reinforcement Learning

Patrick Ulam', Ashok Goel', Joshua Jones', and William Murdock?
1. College of Computing, Georgia Institute of Technology, Atlanta, USA 30332
2. IBM Watson Research Center, 19 Skyline Drive, Hawthorne, USA 10532
pulam, goel, jkj@cc.gatech.edu, murdockj@us.ibm.com

Abstract

In model-based reflection, an agent contains a
model of its own reasoning processes organized
via the tasks the agents must accomplish and the
knowledge and methods required to accomplish
these tasks. Utilizing this self-model, as well as
traces of execution, the agent is able to localize
failures in its reasoning process and modify its
knowledge and reasoning accordingly. We apply
this technique to a reinforcement learning prob-
lem and show how model-based reflection can be
used to locate the portions of the state space over
which learning should occur. We describe an ex-
perimental investigation of model-based reflection
and self-adaptation for an agent performing a spe-
cific task (defending a city) in a computer war strat-
egy game called FreeCiv. Our results indicate that
in the task examined, model-based reflection cou-
pled with reinforcement learning enables the agent
to learn the task with effectiveness matching that of
hand coded agents and with speed exceeding that
of non-augmented reinforcement learning.

1 Introduction

In model-based reflection/introspection, an agent is endowed
with a self-model, i.e., a model of its own knowledge and rea-
soning. When the agent fails to accomplish a given task, the
agent uses its self-model, possibly in conjunction with traces
of its reasoning on the task, to assign blame for the failure(s)
and modify its knowledge and reasoning accordingly. Such
techniques have been used in domains ranging from game
playing [B. Krulwich and Collins, 1992], to route planning
[Fox and Leake, 1995; Stroulia and Goel, 1994; 1996], to as-
sembly and disassembly planning [Murdock and Goel, 2001;
2003]. It has proved useful for learning new domain con-
cepts [B. Krulwich and Collins, 1992], improving knowl-
edge indexing [Fox and Leake, 1995], reorganizing domain
knowledge and reconfiguring the task structure [Stroulia and
Goel, 1994; 1996], and adapting and transferring the domain
knowledge and the task structure to new problems [Murdock
and Goel, 2001; 2003].

However, [Murdock and Goel, 2001; 2003] also showed
in some cases model-based reflection can only /ocalize the

107

causes for its failures to specific portions of its task structure,
but not necessarily identify the precise causes or the mod-
ifications needed to address them. They used reinforcement
learning to complete the partial solutions generated by model-
based reflection: first, the agent used its self-model to localize
the needed modifications to specific portions of its task struc-
ture, and then it used Q-learning within the identified parts of
the task structure to precisely identify the needed modifica-
tions.

In this paper, we evaluate the inverse hypothesis, viz.,
model-based reflection may be useful for focusing reinforce-
ment learning. The learning space represented by combi-
nations of all possible modifications to an agent’s reason-
ing and knowledge can be extremely large for reinforcement
learning to work efficiently. If, however, the agent’s self-
model partitions the learning space into much smaller sub-
spaces and model-based reflection /ocalizes the search to spe-
cific subspaces, then reinforcement learning can be expedi-
ent. We evaluate this hypothesis in the context of game play-
ing in a highly complex, extremely large, non-deterministic,
partially-observable environment. This paper extends our ear-
lier work reported in [Ulam ef al., 2004] which used only
model-based reflection.

2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique
in which an agent learns through trial and error to maxi-
mize rewards received for taking particular actions in partic-
ular states over an extended period of time [Kaelbling et al.,
1996]. Given a set of environmental states S, and a set of
agent actions .4, the agent learns a policy, w, which maps the
current state of the world s € S, to an action a € A, such
that the sum of the reinforcement signals r are maximized
over a period of time. One popular technique is Q-Learning.
In Q-Learning, the agent calculates Q-Values, the expected
value of taking a particular action in a particular state. The Q-
Learning update rule can be described as Q(s,a) = Q(s,a)+
a(r + ymax, Q*(s,a') — Q(s,a)), where r is the reward
received for taking the action, max, Q*(s,a’) is the reward
that would be received by taking the optimal action after that,
a is a parameter to control the learning rate, and -y is a param-
eter to control discounting.

2.1 Hierarchical Reinforcement Learning

Although reinforcement learning is very popular and has been
successful in many domains (e.g., [Tesauro, 1994]), its use is

limited in some domains because of the so-called curse of

dimensionality: the exponential growth of the state space re-
quired to represent additional state variables. In many do-
mains, this prevents the use of reinforcement learning with-
out significant abstraction of the state space. To overcome
this limitation, much research has investigated the use of hier-
archical methods of reinforcement learning. There are many
variants of hierarchical reinforcement learning most of which
are rooted the the theory of Semi-Markov decision processes
[Barto and Mahadevan, 2003]. Hierarchical reinforcement
learning techniques such as MAXQ value decomposition [Di-
etterich, 1998] rely on domain knowledge in order to deter-
mine the hierarchy of tasks that must be accomplished by the
agent, as does our approach. However, in our approach, the
agent uses model-based reflection to determine the portion of
the task structure over which the reward should be applied af-
ter task execution. Furthermore, many hierarchical methods
focus on abstractions of temporally extended actions for the
hierarchy [Sutton et al., 1999]; our approach uses the hierar-
chy to delimit natural partitions in non-temporally extended
tasks.

3 The FreeCiv Game

The domain for our experimental investigation is a popu-
lar computer war strategy game called FreeCiv. FreeCiv is
a multiple-player game in which a player competes either
against several software agents that come with the game or
against other human players. Each player controls a civi-
lization that becomes increasingly modern as the game pro-
gresses. As the game progresses, each player explores the
world, learns more about it, and encounters other players.
Each player can make alliances with other players, attack
the other players, and defend their own assets from them.
In the course of a game (that can take a few hours to play)
each player makes a large number of decisions for his civi-
lization ranging from when and where to build cities on the
playing field, to what sort of infrastructure to build within
the cities and between the civilizations’ cities, to how to de-
fend the civilization. FreeCiv provides a highly complex, ex-
tremely large, non-deterministic, partially-observable domain
in which the agent must operate.

Due the highly complex nature of the FreeCiv game, our
work so far has addressed only two separate tasks in the do-
main: Locate-City and Defend-City. Due to limitations of
space, in this paper we describe only the Defend-City task.
This task pertains to the defense of one of the agent’s cities
from enemy civilizations. This task is important to the cre-
ation of a general-purpose FreeCiv game playing agent in that
the player’s cities are the cornerstone in the player’s civiliza-
tion. This task is also common enough such that the agent
must make numerous decisions concerning the proper de-
fense of the city during the time span of a particular game.

108

4 Agent Model

We built a simple agent (that we describe below) for the
Defend-City task. The agent was then modeled in a vari-
ant of a knowledge-based shell called REM [Murdock, 2001]
using a version of a knowledge representation called Task-
Method-Knowledge Language (TMKL). REM agents written
in TMKL are divided into tasks, methods, and knowledge. A
task is a unit of computation; a task specifies what is done
by some computation. A method is another unit of computa-
tion; a method specifies #ow some computation is done. The
knowledge portion of the model describes the different con-
cepts and relations that tasks and methods in the model can
use and affect as well as logical axioms and other inferencing
knowledge involving those concepts and relations. Formally,
a TMKL model consists of a tuple (T, M, K) in which T is
a set of tasks, M is a set of methods, and K is a knowledge
base. The representation of knowledge (K) in TMKL is done
using using Loom, an off-the-shelf knowledge representation
(KR) framework. Loom provides not only all of the KR ca-
pabilities found in typical Al planning system (the ability to
assert logical atoms, to query whether a logical expression
holds in the current state, etc.), but also an enormous vari-
ety of more advanced features (logical axioms, truth main-
tenance, multiple inheritance, etc.). In addition, Loom pro-
vides a top-level ontology for reflective knowledge. Through
the use of a formal framework such as this, dependencies be-
tween the knowledge used by tasks as well as dependencies
between tasks themselves can be described in such a way that
an agent will be able to reason about the structure of the tasks.
A thorough discussion of TMKL can be found in [Murdock
and Goel, 1998].

Table 1 describes the functional model of the Defend-
City task as used by model-based reflection. The overall
Defend-City task is decomposed into two sub-tasks by the
Evaluate-then-Defend method. These subtasks are the eval-
uation of the defense needs for a city and the building of a
particular structure or unit at that city. One of the subtasks,
Evaluate-Defense-Needs, can be further decomposed through
the Evaluate-Defense method into two additional subtasks: a
task to check internal factors in the city for defensive require-
ments and a task to check for factors external to the imme-
diate vicinity of the city for defensive requirements. These
subtasks are then implemented at the procedural level for ex-
ecution as described below.

The Defend-City task is executed each turn that the agent
is not building a defensive unit in a particular city in order
to determine if production should be switched to a defensive
unit. It is also executed each turn that a defensive unit has
finished production in a particular city. The internal evalua-
tion task utilizes knowledge concerning the current number
of troops that are positioned in and around a particular city
to determine if the city has an adequate number of defenders
barring any extraneous circumstances. This is implemented
as a relation in the form of the evaluation of the linear ex-
pression: allies(r) + d > t where allies(r) is the number of
allies within radius r, d is the number of defenders in the city
and ¢ is a threshold value. The external evaluation of a city’s
defenses examines the area within a specified radius around a

Table 1: TMKL Model of Defend-City Task

TMKL Model of the Defend-City Task

Task Defend-City
by | Evaluate-Then-Build
makes | City-Defended
Method Evaluate-Then-Build
transitions.
state: s/ | Evaluate-Defense-Needs
success | s2
state: s2 | Build-Defense
success | success

additional-result

City-Defended, Unit-Built
Wealth-Built

Task Evaluate-Defense-Needs
input | External/Internal-Defense-Advice
output | Build-Order
by | UseDefenseAdviceProcedure
makes | DefenseCalculated
Method Evaluate-Defense-Needs
transitions.:
state: s/ | Evaluate-Internal
success | s2
state: s2 | Evaluate-External
success | success

additional-result

Citizens-Happy, Enemies-Accounted
Allies-Accounted

Task Evaluate-Internal
input | Defense-State-Info
output | Internal-Defense-Advice
by | InternalEvalProcedure
makes | Allies-Accounted, Citizens-Happy
Task Evaluate-External
input | Defense-State-Info
output | External-Defense-Advice
by | ExternalEvalProcedure
makes | Enemies-Accounted
Task Build-Defense
input | BuildOrder
by | BuildUnitWealthProcedure
makes | Unit-Built, Wealth-Built

city for nearby enemy combat units. It utilizes the knowledge
of the number of units, their distance from the city, and the
number of units currently allocated to defend the city in order
to provide an evaluation of the need for additional defense.
This is also implemented as a relation in the form of the lin-
ear expression enemies(r) + e; < d where enemies(r) is
the number of enemies in radius r of the city, e; is a thresh-
old value, and d is the number of defenders in the city. These
tasks produce knowledge states in the form of defense recom-
mendations that are then utilized by the task that builds the
appropriate item at the city. The Build-Defense task utilizes
the knowledge states generated by the evaluation subtasks,
knowledge concerning the current status of the build queue,
and the technology currently available to the agent to deter-

109

mine what should be built for a given iteration of the task.
The Build Defense task will then proceed to build a defen-
sive unit, either a warrior or a phalanx based on the technol-
ogy level achieved by the agent at that particular point in the
game, or wealth to keep the citizens of the city happy. The
goal of the Defend-City task is to provide for the defense of
a city for a certain number of years. The task is considered
successful if the city has not been conquered by opponents by
the end of this time span. If the enemy takes control of the
city the task is considered a failure. In addition, if the city
enters civil unrest, a state in which the city revolts because
of unhappiness, the task is considered failed. Civil unrest is
usually due the neglect of infrastructure in a particular city
that can be partially alleviated by producing wealth instead
of additional troops.

5 Experimental Setup

We compared four variations of the Defend-City agent to de-
termine the effectiveness of model-based reflection in guiding
reinforcement learning. These were a control agent, a pure
model-based reflection agent, a pure reinforcement learning
agent, and a reflection-guided RL agent. The agents are de-
scribed in detail below.

Each experiment was composed of 100 trials and each trial
was set to run for one hundred turns at the hardest difficulty
level in FreeCiv against eight opponents on the smallest game
map available. This was to ensure that the Defend-City task
would be required by the agent. The same random seed was
utilized in all the trials to ensure that the same map was used.
The random seed selected did not fix the outcome of the com-
bats, however. The Defend-City task is considered successful
if the city neither revolted nor was defeated. If the task was
successful no adaptation of the agent occurred. If the agent’s
city is conquered or the city’s citizens revolt, the Defend-City
task is considered failed. Execution of the task is halted and
adaptation appropriate to the type of agent is initiated. The
metrics measured in these trials include the number of suc-
cessful trials in which the city was neither defeated nor did
the city revolt. In addition, the number of attacks successfully
defended per game was measured under the assumption that
the more successful the agent in defending the city, the more
attacks it will be able to successfully defend against. The fi-
nal metric measured was the number of trials run between
failures of the task. This was included as a means of deter-
mining how quickly the agent was able to learn the task and
is included under the assumption that an agent with longer
periods between task failures indicate that the task has been
learned more effectively.

5.1 Control Agent

The control agent was set to follow the initial model of the
Defend-City task and was not provided with any means of
adaptation. The initial Defend-City model used in all agents
executes the Evaluate-External only looking for enemy units
one tile away from the city. The initial Evaluate-Internal task
only looks for defending troops in the immediate vicinity of
the city and if there are none will build a single defensive
unit. The control agent will not change this behavior over the
lifetime of the agent.

Table 2: State variables for RL Based Agents

| Pure RL State Variables | Additional State Variables | Associated Sub-Task |

<1 Allies in City

Evaluate-Internal

< 3 Allies in City

Evaluate-Internal

< 6 Allies in City

Evaluate-Internal

< 1 Allies Nearby

Evaluate-Internal

< 2 Allies Nearby

Evaluate-Internal

< 4 Allies Nearby

Evaluate-Internal

< 1 Enemies Nearby

Evaluate-External

< 3 Enemies Nearby

Evaluate-External

< 6 Enemies Nearby

Evaluate-External

Internal Recommend

Evaluate-Defense

External Recommend

Evaluate-Defense

Table 3: Failure types used in the Defend-City task
| Model Location (task) | Types of Failures \
Defend-City Unit-Build-Error,
Wealth-Build-Error,
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
Proximity-Miseval,
Threat-Level-Miseval,
None
Unit-Build-Error,
Wealth-Build-Error,
None
Citizen-Unrest-Miseval,
Defense-Present-Miseval,
None
Proximity-Miseval,
Threat-Level-Miseval,
None

Build-Defense

Evaluate-Internal

Evaluate-External

5.2 Pure Model-Based Reflection Agent

The second agent was provided capabilities of adaption
based purely on model-based reflection. Upon failure of the
Defend-City task, the agent used an execution trace of the last
twenty executions of the task, and in conjunction with the cur-
rent model, it performed failure-driven model-based adapta-
tion. The first step is the localization of the error through
the use of feedback in the form of the type of failure, and
the model of the failed task. Using the feedback, the model
is analyzed to determine in which task the failure has oc-
curred. For example, if the the Defend-City task fails due to
citizen revolt the algorithm would take as input: the Defend-
City model, the traces of the last twenty executions of the
task, and feedback indicating that the failure was a result of
a citizen revolt in the city. The failure localization algorithm
would take the model as well as the feedback as input. As
a city revolt is caused by unhappy citizens, this information
can be utilized to help localize where in the model the fail-
ure may have occurred. This algorithm will go through the
model, looking for methods or tasks that result in knowledge
states concerning the citizens’ happiness. It will first locate

110

the method Evaluate-Defense-Need and find that this method
should result in the assertion Citizens-Happy. It will con-
tinue searching the sub-tasks of this method in order to find if
any sub-task makes the assertion Citizens-Happy. If not, then
the error can be localized to the Evaluate-Defense-Need task
and all sub-tasks below it. In this case, the Evaluate-Internal
task makes the assertion Citizens-Happy and the failure can
be localized to that particular task. An extensive discussion
on failure localization in model-based reflection can be found
in [Murdock, 2001]. Given the location in the model from
which the failure is suspected to arise, the agent then analyzes
the execution traces available to it to determine to the best of
its ability what the type of error occurred in the task execu-
tion through the use of domain knowledge. For this agent,
this is implemented through the use of a failure library con-
taining common failure conditions found within the Defend-
City task. An example of a failure library used in this task is
shown in Table 3. If a failure has been determined to have
occurred, it is then used to index into a library of adaptation
strategies that will modify the task in the manner indicated by
the library. These adaptations consist of small modifications
to the subtasks in the defend city tasks, such as changing the
Evaluate-External subtask to look for enemies slightly fur-
ther away. This is a slight variation on fixed value production
repair [Murdock, 2001], as instead of adding a special case
for the failed task, the agent replaces the procedure with a
slightly more general version. If multiple errors are found
with this procedure, a single error is chosen stochastically so
as to minimize the chance of over-adaptation of the agent.

5.3 Pure Reinforcement Learning Agent

The third agent used a pure reinforcement learning strategy
for adaptation implemented via Q-Learning. The state space
encoding used by this agent is a set of nine binary variables
as seen in Table 2. This allows a state space of 512 distinct
states. It should be noted, however, that not all states are
reachable in practice. The set of actions available to the agent
were: Build Wealth, Build Military Unit. The agent received
a reward of -1 when the the Defend-City task failed and a
reward of 0 otherwise. In all trials alpha was kept constant at
0.8 and gamma was set to 0.9.

Number of Failures

100

80
60 -
40 4

Failures

20 A | |

i

Pure RL Model+RL

Model-
Based

Control

Type of Adaptation

Figure 1: Number of Failures

5.4 Reflection-Guided RL Agent

The final agent utilized model-based reflection in conjunction
with reinforcement learning. The Defend-City task model
was augmented with reinforcement learning by partitioning
the state space utilized by the pure reinforcement learning
agent into three distinct state spaces that are then associ-
ated with the appropriate sub-tasks of the Defend-City task.
This essentially makes several smaller reinforcement learn-
ing problems. Table 2 shows the states that are associated
with each sub-task. The Evaluate-External task is associated
with three binary state variables. Its actions are the equivalent
of the knowledge state produced via the Evaluate-External re-
lation in the pure model-based agent, namely a binary value
indicating if the evaluation procedure recommends that de-
fensive units be built. In a similar manner, Evaluate-Internal
is associated with six binary state variables as shown Table
2. The actions are also a binary value representing the rela-
tion used in the pure model-based agent. There are two ad-
ditional state variables in this agent that are associated with
the Evaluate-Defenses sub-task. The state space for this par-
ticular portion of the model are the outputs of the Evaluate-
External and Evaluate-Internal tasks and is hence two binary
variables. The actions for this RL task is also a binary value
indicating a yes or no decision on whether defensive units
should be built. It should be noted that while the actions of
the individual sub-tasks are different from the pure reinforce-
ment learning agent, the overall execution of the Defend-City
task results in two possible actions for all agents, namely an
order to build wealth or to build a defensive unit. Upon a
failure in the task execution, the agent initiates reflection in
a manner identical to the pure model-based reflection agent.
Utilizing a trace of the last twenty executions of the Defend-
City task as well as its internal model of the Defend-City task,
the agent localizes the failure to a particular portion of the
model as described in section 5.2. If an error in the task ex-
ecution is detected, instead of utilizing adaptation libraries
to modify the model of the task as in the pure model-based
reflection agent, the agent applies a reward of -1 to the sub-
task’s reinforcement learner as indicated via reflection. The
reward is used to update the Q-values of the sub-task via Q-
Learning at which point the adaptation for that trial is over. If
no error is found, then a reward of 0 is given to the appropri-
ate reinforcement learner. In all trials alpha was kept constant
at 0.8 and gamma was set to 0.9.

111

of Attacks Survived Per Trial

of Attacks
O =N WO N

i

Control

Model Pure RL Model+RL

Based
Adaptation Method

Figure 2: Average Attacks Resisted

Average Trials beween Failures

Control

1 ModehRL

Trials Between Failures

1357 9111315171921

Failures

Figure 3: Average Number of Trials Between Failures

6 Results and Discussion

Figure 1 depicts the number of trials in which a failure oc-
curred out of the one hundred trials run for each agent. The
more successful adaptation methods should have a lower fail-
ure rate. As can be seen from the results, the reflection-guided
RL agent proved most effective at learning the Defend-City
task, with a success rate of around twice that of the control
agent. The pure model-based reflection agent with the hand
designed adaptation library proved to be successful also with
a failure rate slightly higher then that of the reflection-guided
RL agent. The pure RL agent’s performance did not match
either of the other two agents in this metric, indicating that
most likely the agent had not had enough trials to successful
learn the Defend-City task. The pure reinforcement learning
agent’s failure rate did improve over that of the control, how-
ever, indicating that some learning did take place, but not at
the rate of either the pure model-based reflection agent or the
reflection-guided RL agent.

The second metric measured was the number of attacks
successfully defended by the agent in its city. This serves as
another means of determining how effectively the agent has
been able to perform the Defend-City task. The more attacks
that the agent was able to defend, the more successfully the
agent had learned to perform the task. The results from this
metric can be seen in Figure 2. Both the pure model-based
reflection and reflection-guided RL agent were able to defend
against an equal number of attacks per trial indicating that
both methods learned the task to an approximately equal de-
gree of effectiveness. The pure RL based agent performed
around twice as well as the control but was less then half
as effective as the model-based methods, once again lend-

ing support to the conclusion that the pure RL based agent is
hampered by its slow convergence times. This result, coupled
with the number of failures, provide significant evidence that
the model-based methods learned to perform the task with a
significant degree of precision. They not only reduced the
number of failures when compared to the control and pure
RL based agent, but were also able to defend the city from
more than twice as many attacks per trial.

Figure 3 depicts the average number of trials between
failures for the first twenty-five failures of each agent aver-
aged over a five trial window for smoothing purposes. This
metric provides a means of measuring the speed of conver-
gence of each of the adaptation methods. As can be seen,
the reflection-guided RL agent shows the fastest convergence
speed followed by the non-augmented model-based reflec-
tion. The pure RL did not appear to improve the task’s ex-
ecution until around the twelfth failed trial. After this point
the control and the pure RL inter-trial failure rate begin to
deviate slowly. Though not depicted in the figure, the perfor-
mance of the pure RL based agent never exceeded a inter-trial
failure rate of three even after all trials were run. This lends
further evidence to the hypothesis that pure RL cannot learn
an appropriate solution to this problem in the alloted number
of trials though it should be noted that the performance of
this agent did slightly outperform that of the control, indicat-
ing that some learning did occur. Surprisingly, the reflection-
guided RL agent outperformed the pure model-based agent in
this metric.

7 Conclusions

This work describes how model-based reflection may guide
reinforcement learning. In the experiments described, this
has been shown to have two benefits. The first is a reduction
in learning time as compared to an agent that learns the task
via pure reinforcement learning. The model-guided RL agent
learned the task described, and did so faster then the pure RL
based agent. In fact, the pure RL based agent did not converge
to a solution that equaled that of either the pure model-based
reflection agent or the reflection-guided RL agent within the
alloted number of trials. Secondly, the reflection-guided RL
agent shows benefits over the pure model-based reflection
agent, matching the performance of that agent in the metrics
measured in addition to converging to a solution in a fewer
number of trials. In addition, the augmented agent eliminates
the need for an explicit adaptation library such as is used in
the pure-model based agent and thus reduces the knowledge
engineering burden on the designer significantly. This work
has only looked at an agent that can play a small subset of
FreeCiv. Future work will focus largely on scaling up this
method to include other aspects of the game and hence larger
models and larger state spaces.

References

[B. Krulwich and Collins, 1992] L. Birnbaum B. Krulwich
and G. Collins. Learning several lessons from one experi-
ence. In Proceedings of the 14th Annual Conference of the
Cognitive Science Society, pages 242-247,1992.

112

[Barto and Mahadevan, 2003] A. G. Barto and S. Mahade-
van. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(4):341-379,
2003.

[Dietterich, 1998] Thomas G. Dietterich. = The MAXQ
method for hierarchical reinforcement learning. In Pro-
ceedings of the Fifteenth International Conference on Ma-
chine Learning, pages 118-126, 1998.

[Fox and Leake, 1995] Susan Fox and David B. Leake. Us-
ing introspective reasoning to refine indexing. In Proceed-
ings of the Thirteenth International Joint Conference on
Artificial Intelligence, 1995.

[Kaelbling et al., 1996] Leslie P. Kaelbling, Michael L.
Littman, and Andrew P. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research,
4:237-285,1996.

[Murdock and Goel, 1998] J. William Murdock and
Ashok K. Goel. A functional modeling architecture for
reflective agents. In AAAI-98 workshop on Functional
Modeling and Teleological Reasoning, 1998.

[Murdock and Goel, 2001] W. Murdock and A. K. Goel.
Meta-case-based reasoning: Using functional models to
adapt case-based agents. In Proceedings of the 4th Inter-
national Conference on Case-Based Reasoning, 2001.

[Murdock and Goel, 2003] W. Murdock and A. K. Goel. Lo-
calizing planning with functional process models. In Pro-
ceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, 2003.

[Murdock, 2001] J. W. Murdock. Self-Improvement Through
Self-Understanding: Model-Based Reflection for Agent
Adaptation. PhD thesis, Georgia Institute of Technology,
2001.

[Stroulia and Goel, 1994] E. Stroulia and A. K. Goel. Learn-
ing problem solving concepts by reflecting on problem
solving. In Proceedings of the 1994 Euopean Conference
on Machine Learning, 1994.

[Stroulia and Goel, 1996] E. Stroulia and A. K. Goel. A
model-based approach to blame assignment: Revising the
reasoning steps of problem solvers. In Proceedings of
AAAIL’96, pages 959-965, 1996.

[Sutton et al., 1999] Richard S. Sutton, Doina Precup, and
Satinder P. Singh. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112:181-211, 1999.

[Tesauro, 1994] Gerald Tesauro. TD-Gammon, a self-
teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215-219, 1994.

[Ulam et al., 2004] P. Ulam, A. Goel, and J. Jones. Reflec-
tion in action: Model-based self-adaptation in game play-
ing agents. In AAAI Challanges in Game Al Workshop,
2004.

