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Abstract

The general task of abduction is to infer a hypothesis that best explains a set of data. A typical
subtask of this is to synthesize a composite hypothesis that best explains the entire data from
elementary hypotheses which can explain portions of it. The synthesis subtask of abduction is
computationally expensive, more so in the presence of certain types of interactions between the
elementary hypotheses. In this paper, we first formulate the abduction task as a nonmonotonic
constrained-optimization problem. We then consider a special version of the general abduction
task that is linear and monotonic. Next, we describe a neural network based on the Hopfield
model of computation for the special version of the abduction task. The connections in this
network are symmetric, the energy function contains product forms, and the minimization of
this function requires a network of order greater than two. We then discuss another neural
architecture which is composed of functional modules that reflect the structure of the abduction
task. The connections in this second-order network are asymmetric. Finally, we discuss how
the second architecture can be extended to solve the general task of abduction.

1 Abductive Inference

Abduction is inference to the best explanation for a given set of data. The general task of abduction takes
as input a set of data and gives as output a hypothesis that can best explain the input data. A typical subtask
of the abduction task is classification of the given data into potentially relevant elementary explanatory
hypotheses stored in memory [19]. In the classification task, the stored elementary hypotheses are matched
with the data, and, depending on the degree of match, a prima facie belief value for each explanatorily
relevant hypothesis is determined. For simple abductive problems, for instance diagnosis under the single
fault assumption, the classification subtask may yield elementary hypotheses that can individually explain
the entire data. For such problems, the elementary hypothesis with the highest belief value represents the
best explanation.

In general, however, an elementary hypothesis that can explain the entire data may not be available in
memory. Instead, a composite explanation has to be synthesized from elementary hypotheses that can explain
various portions of the data [19]. What makes one composite hypothesis operationally better than others
are factors such as explanatory coverage, plausibility, parsimony and internal consistency. Synthesizing a
composite hypothesis that satisfies these criteria for a best explanation, however, is computationally very
expensive, more so in the presence of certain types of interactions between the elementary hypotheses [1].
This raises the issue of how to rapidly synthesize composite explanations from elementary explanatory
hypotheses.

In [14] we proposed the exploitation of concurrency in the synthesis of composite explanations and
described a distributed-memory message-passing architecture for this purpose. Our work on concurrent
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synthesis of composite explanations led us to think in terms of artificial neural networks for the abduction
task. From a concurrent-processing viewpoint, neural networks form an attractive proposal for an efficient,
fine grained, massively parallel machine dedicated to some special class of problems [29]. In [13] we
described a preliminary neural architecture based on Hopfield networks [16, 17] for synthesizing composite
explanations. In this paper, we formalize the abduction task as a constrained optimization problem, elaborate
on the neural architecture for the synthesis subtask of abduction, compare our computational model with
similar proposals, and discuss its implications.

2 Abduction as a Combinatorial Optimization Problem

In this section we provide a characterization of the general task of abduction. We begin with a formal
definition of the abduction task, then specify the classification [1] and synthesis subtasks of abduction, next
specify the criteria that make a explanatory hypothesis a best explanation for a set of data, then characterize
some of the interactions that can occur between elementary hypotheses, and finally describe a special version
of the general abduction task.

2.1 Characterization of the Abduction Task

Let D = {d;|i = 1,..., N} be a finite set of N data (effects, facts, etc.).

Let H = {hj|j = 1,..., M} be a finite set of M elementary (causal) hypotheses.

Let ¢ be a map from subsets of H to subsets of D; q : 9(H) — ©(D). (S) denotes the power set of a set
S, i.e., the set of all subsets of S. We define ¢q({h;}) as q(h;) for h; € H; thus the map ¢ is also defined
from an elementary hypothesis to subsets of D. We interpret ¢(h;) = D;, where h; € H and D; C D, as
the explanatory coverage of h;, i.e. h; can explain only and all members of D;.

Let D, be a set of n observed effects and given facts, where D, C D.

The information-processing task of abduction may be characterized as a five-tuple (D, H, q, D,, H.), where
D, H,q, and D, are the inputs to the task, and H., the output of the task, is a subset of H, H. C H, that
best explains D,,.

2.2 The Classification and Synthesis Subtasks of Abduction

Let B = {bg|k = 1,...,1} be a finite set of [ belief values.

Let H, C H such that each h; € H, can explain some non-empty subset of D,,.

Let p be a map from H, to B; p : He — B. The map p is also defined from an elementary hypothesis to

belief values. we define p({h;}) as p(h;) and interpret p(h;) as the prima facie belief value for h;.

The classification subtask takes D, H, D,, and r as input, where r is a map from 9(D,) — ©(H), and

gives H, and p as output [11, 15]. The synthesis subtask of abduction may be characterized as a five-tuple

(D,,H.,q,p, H.), where D,, H,, q, and p constitute the input to the task, and H. is the output of the task.
Since the classification problem is relatively well understood, and a number of well known techniques

for solving it already exist, we will not discuss it any further in this paper (Bylander er al. [1] and

Chandrasekaran and Goel [3] provide surveys of some classification techniques). Instead, we will focus on

the task of synthesizing composite explanations.

2.3 Characterization of the Best Explanation

The best composite explanation can be operationally characterized based on the following three optimization
criteria:



1. Maximal explanatory coverage of data: A composite hypothesis H7 is a better explanation of D, than
another composite hypothesis H7 if

q(H{)N D, D q(HS)N D,

Ideally, the assembled composite hypothesis, H., would provide complete explanatory coverage of
D,,i.e., q(H.) 2 D,.

2. Maximal belief in hypothesis: A composite hypothesis H{ is a better explanation of D, than another
composite hypothesis H if

p(HY) > p(H5)

This specifies that among composite hypotheses that explain the data, the one with the highest belief
value is the “best” explanation.

3. Minimal hypothesis: A composite hypothesis H is a better explanation of D, than another composite
hypothesis H if

|H| < |Hj].
This global optimization condition specifies that H. should be parsimonious.

Of these, the first and the third criteria are independent of belief values. Deciding on the “best” set of
belief values for a problem at hand is extremely difficult. We choose to interpret the second criterion as
follows: A composite hypothesis H{ is a better explanation of D, than another composite hypothesis H5 if

Vd € D,,
Vhy € Hs such that d € g(hy) N D,,
Jhy € Hf such that (d € q(h1) N Dy) A (p(h1) > p(h2)).

This specifies that the component hypotheses in H. should be locally optimal in terms of their belief
values. In the presence of interactions among elementary hypotheses, local optimality is critical in deriving
heuristic solutions to the abduction problem (See the discussion in Section 2.4).

The general abduction task is over constrained due to the potential conflicts among the above criteria
for a best explanation. This conflict may be resolved by imposing a precedence relation according to which
maximal coverage of the data has the highest precedence and parsimony of the composite hypothesis has the
lowest [20]. However, depending on the functions ¢ and p, the synthesis task may now be underconstrained,
in which case the synthesized explanation would only be a best explanation.

2.4 Interactions Among Elementary Explanations

Several distinct types of interaction are possible between two elementary explanatory hypotheses hy, hy €
H.[1,19]:

o Associativity: The inclusion of h; in H, suggests the inclusion of h,. Such an interaction may arise
if there is knowledge of, say, a statistical association between h; and h;.

o Additivity: h; and h; cooperate additively where their explanatory capabilities overlap. This may
happen if h; and h, can separately explain some datum d € D, only partially, but collectively can
explain it fully.

o [ncompatibility: hy and h;, are mutually incompatible, i.e., if one of them is included in H,. then the
other should not be included.



o Cancellation: hy and h; cancel the explanatory capabilities of each other in relation to some d € D,,.
For example, h; might imply that an increase in some data value, while h, may imply a decrease in
the value, thus canceling each others explanatory capability with respect to that datum.

The abduction problem is nonlinear in the presence of incompatibility interactions and nonmonotonic
in the presence of cancellation interactions. The general (nonlinear, nonmonotonic) abduction task is
NP-complete [1].

2.5 A Special Version of the General Abduction Task

Let us now consider a special version of the general problem of synthesizing composite hypotheses that is
linear, and, therefore, also monotonic. The synthesis task is linear [1] if

Vhi,hj € He,  q(hi) U q(h;) = q({hi, hj})

and it is monotonic if

Vhi,hj € He,  q(hi) Uq(hy) € q({hi, b))

In this special version of the problem, we assume that the elementary hypotheses are non-interacting, i.e
they offer mutually compatible explanatory alternatives where their explanatory coverages overlap. We also
assume for simplicity that the belief values found by the classification subtask of abduction for all h € H,
are equal to 1 (or True).

Under these conditions, the synthesis subtask of abduction can be represented by a bipartite graph
consisting of nodes in the set D, U H,. There are no edges between the nodes in D, nor are there any edges
between the nodes in H.. The edges between the nodes in D, and the nodes in H, can be represented by a
matrix ) of m rows and n columns, where the rows correspond to data d; € D, and the columns correspond
to hypotheses h; € H,. The entries in the matrix may be denoted ();; and indicate whether a given data is
explained by a specific hypothesis. The entries are defined as:

Qi = 0 if datum d; is not explained by hypothesis h;
K 1 if datum d; is explained by hypothesis h;

Given the matrix () for the bipartite graph, the synthesis subtask of abduction can be modeled as a
set-covering problem, which is to find the minimum number of columns that cover all the rows. This
ensures that the composite hypothesis will explain all elements of D, and will be parsimonious. (Since the
belief values for all h € H, are assumed to be 1, these are the only two remaining criteria for characterizing
a best explanation.) Note that the general set cover problem is NP-complete [10].

3 The Hopfield Model of Computation

Hopfield [16, 17] has proposed a neural network in which highly interconnected neurons collectively
compute good solutions to difficult optimization problems such as the Traveling Salesman Problem (which
too is NP-complete) [18]. The neurons in the network are analog devices which may make them closer
to biological neurons than strictly digital models. The power of this model of computation comes from
the rapidity with which acceptable solutions are found, though the solutions are not guaranteed to be the
globally optimal. The emphasis in the model is on exploitation of massive parallelism as opposed to the
pursuit of the best solution, the meaning of which often carries a certain degree of arbitrariness for many
real world problems.



The processing elements (or neurons) can be modeled as amplifiers having a sigmoid input-output
relationship defined by V; = g(u;), where the output voltage V; of amplifier j is a function of the input
voltage u;. I; represents the input bias current to the j** neuron. Connectivity between pairs of neurons is
defined by a connectivity matrix {W;;} :¢,j = 1,..., N, where a negative value of connectivity indicates
that the connection is inhibitory. Hopfield [17] has shown that in case of symmetric connections between
neurons i.e., Vi,5 W;; = Wj;, the network evolves to stable states in which the outputs of all neurons
reach a constant value. The time evolution of the individual neurons is given by

du; N
d—tj:—u]'-FZWijVi-i-Ij

=1
The specific values of the steady-state output voltages V; obtained from the time evolution of the network
are determined by the bias currents I; and the initial values of the input voltages u;.
If the diagonal elements of the W matrix are zero (with symmetric connectivities) and the amplifiers
operate in a high gain mode, i.e., their gain functions are good approximations to threshold functions, then
the stable states of the network are the local minima of the energy function defined by

1 N N N
E==33 % WiyViVi =3 Vil
7=1

i=17=1

The state space of the network of /V neurons is defined by the interior of a hypercube of dimension IV,
and the set of all local minima of energy F is defined by the values of W;;. By a proper choice of the gain
function, the local minima of E' can be constrained to occur at the corners of the /NV-dimensional hypercube
i.e., with all the values of V; =0 or 1. This is especially useful when one is interested in digital solutions (0
or 1) to a given problem. An appropriate choice for the gain function is

v, = (1 4 tanh(u,))
2
If instead, we use purely digital neurons, problems such as cycling through a set of states may arise. In
addition, with purely digital neurons, the deterministic search for the solution will have to proceed along

the edges of the hypercube that defines the search space. However, by using analog neurons, one expects to
cut through the search space.

4 A Neural Network for the Abduction Task

In this section, we consider the special (linear, monotonic) version of the general synthesis subtask of
abduction discussed in Section 2.5, and describe two neural networks for solving it. The first network is
based on the Hopfield model of computation for optimization problems, and the second network uses Tank
and Hopfield’s computational architecture for linear programming [33].

To solve problems using neural networks, one must cast them into the neural network model of com-
putation. For the synthesis subtask of abduction, we associate a neural variable V; with each hypothesis
h € H, to indicate if the hypothesis is included in the composite hypothesis C. We minimize the cardinality
of the composite hypothesis

Y
j=1

subject to the constraint that all the data d € D, are completely explained i.e.,
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Figure 1: An Instance of Abduction
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The term in the energy function that represents the problem constraint must evaluate to zero when the
constraint is satisfied and must evaluate to a large positive value when the constraint is not satisfied, forcing
the network to evolve accordingly. We chose to use a term expressed as a sum of expressions, one for each
datum d;, such that the expression evaluates to zero, when a hypothesis £ ; that can explain the datum d; is
in the composite, i.e., V; = 1. Given that () is an incidence matrix (with elements having a value O or 1),

the expression

ST @y)+ (- 1)

satisfies the following conditions:

1. Each product expression can never evaluate to a negative number,
2. The sum of the product terms, thus, can never evaluate to a negative number,

3. Each product term evaluates to zero when a hypothesis that can explain the datum is in the composite;
otherwise, it evaluates to a large value,

4. The sum of the product term, thus, evaluates to zero when a composite set of hypotheses that can
explain all the data is found.

To illustrate, let us consider the very simple example shown in Figure 1. This example contains three
hypothesis, h1, hy, h3, and three data elements, d, d», d3. In this example, d; can be explained only by A
and dj can be explained only by h,, where as d3 can be explained by both h; and h3. If we choose h; and
hs butnot hy (i.e., Vi = 1 and V3 = 1 but V, = 0), the value of the expression for datum d; is 1 and hence
the constraint term has a value 1 (the other two data result in a value zero, since hypothesis that can explain
them is in the composite). If we include all the three h;’s, the constraint term evaluates to zero; for the case
with h; and h, in the composite, the term again evaluates to zero. However, the second case results in a
lower value of the actual function }77 | V; (the cardinality of the composite hypothesis) being minimized;
thus the network would choose the second case as the solution for the abduction instance in Figure. 1.



Thus, we derive the energy function as follows:

T i3 Tt
E=ax) V; + B3 J[{(01-QyH)+(0-V))}
j=1 i=1j=1
where o and (3 are positive constants. The first term in the energy function represents the cardinality of the
composite hypothesis and the second term represents the penalty for lack of complete coverage. The second
term will have a value 0, which is its lowest, in the case of complete coverage — for each datum d € D,,
the product will be O if there is at least one hypothesis h € H, that can explain it, and among those that can
explain it, at least one of them is included in the composite hypothesis. Since, ensuring complete coverage
of the data has a higher precedence than parsimony of the composite hypothesis, the constant 5 should be
much larger than a.

We note the appearance of the product form in the energy function. This requires a k-th order neural
network, where k = max; > 7" | Qij, the largest number of hypotheses i € H. that can explain any one of
d € D,. A k-th order neural network admits up to k-way connections among the neurons [31]. A k-way
connection could be thought of as a bus connecting those neurons which participate in the connection. With
symmetric k-way connections, the energy function of such a network can be shown to be non-increasing
with time. An example of a 3-way symmetric connection is one where

Vi,j ko Wijk = Wik = Wiki = Wik = Whij = Wiy

i.e., the connectivity W is the same for all permutations of the subscripts. Note that such a higher-order
network can solve the synthesis task using only m neurons, one for each h € H,.

4.1 Another Neural Architecture

We now describe a second neural architecture for the special version of the general synthesis subtask of
abduction discussed in Section 2.5. Unlike the first neural network, this architecture is based on a second
order neural network with asymmetric connections between the neurons.

The key idea in this architecture is to explicitly represent the constraints of the abductive task on the
neural network. The network is composed of different subnets, each responsible for ensuring the satisfaction
of the different criteria for the best explanation: one subnet represents the hypotheses h € H. and ensures
global parsimony of the composite hypothesis while another subnet explicitly represents the local constraints
of explaining the data elements d € D, and ensures maximal explanatory coverage of D,. These subnets
may be viewed as functional modules that reflect the structure of the problem and cooperatively perform
the task of abduction. Note that assigning different functions to subnets comprising the network makes for
a structured neural network [8].

In fact, this is the functional organization that we initially used for the distributed-memory message-
passing model for abduction [14]. In this model, one layer of processes (neurons) representing the m
elementary hypotheses are responsible for ensuring parsimony of the composite hypothesis as well as for
accommodating interactions between the hypotheses for the general abduction problem. Another layer of
processes (neurons) corresponding to the n data elements are responsible for ensuring maximal coverage of
data (as well as ensuring maximal belief in the composite hypothesis for the general abductive task). Each
process (neuron) representing an explanatory hypothesis makes local decisions based on the knowledge
available to it and communicates (sends a signal) its results to the relevant data processes. Similarly, each
process (neuron) corresponding to a datum to be explained makes local choices and communicates its results
to the appropriate hypotheses processes. This flow of information back and forth between the two layers
of processes continues until a composite hypothesis is fully synthesized. The adaptive resonance theory




[2] uses a similar functional organization of processes which allows feedback of information between two
layers of processes.

Tank and Hopfield [33] have proposed a neural network for the linear programming problem that
implicitly captures many of these ideas, and our second neural architecture can be mapped on to their
scheme. The network contains m + n neurons. The output voltages of the m neurons which represent

hypotheses h € H, in the module responsible for ensuring parsimony are denoted as f;,7 = 1,...,m.
These neurons operate in the high gain mode in order to provide 0/1 solutions. The module responsible for
satisfying the constraints of explaining each d € D, is made up of n neurons denoted by ¢;,z = 1,...,n,

one for each constraint, 37 | Q;;V; > 1. The output of the neuron g; is zero if the corresponding datum d;
is explained by some elementary hypothesis in the composite hypothesis.

The pattern of connectivity among the modules represents the interaction between the competing criteria
which characterize the best explanation. Thus, in the network for abductive inference, the output of each f;
hypothesis neuron is transmitted to the input of those constraint neurons g; which represent a constraint that
the hypothesis can satisfy. Similarly, the output of each g; neuron is transmitted to those f; neurons that can
help satisfy the constraint. The relative speeds of operation of the neurons in the different modules reflect
the precedence relationship among the criteria. Thus the g; neurons operate at a much higher speed than the
f; neurons reflecting the precedence relation between the criteria of complete coverage and parsimony.

5 Discussion

Abductive inference appears to be ubiquitous in cognition. Abduction occurs, for instance, in diagnostic
problem solving, where the data is in the form of manifestations (or symptoms) and the explanatory
hypotheses are about malfunctions (or diseases) [25, 26]. Data interpretation, where the data is in the
form of observations (or sensor readings) and the explanatory hypotheses are about objects (or events); and
situation assessment, where the data is in the form of events and the explanatory hypotheses are goals and
plans ascribed to agents, are also instances of abduction. Some aspects of natural language processing,
visual image processing, and explanation-based learning appear to be abductive in character as well ([6]
gives an account of how these tasks involve abductive inference).

5.1 Related Research

Previous research on abduction has led to the development of several general computational theories of
inference to the best explanation. Our characterization of the abduction task and its decomposition into the
subtasks of classification and synthesis directly builds on [19] with one notable difference. In [19], Josephson
et al view the property of parsimony of the composite explanation like this: a composite hypothesis Hf is a
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